
PHYSICAL REVIEW FLUIDS 6, 064302 (2021)

Mechanisms governing the settling velocities and spatial distributions
of inertial particles in wall-bounded turbulence

A. D. Bragg *

Department of Civil and Environmental Engineering, Duke University,
Durham, North Carolina 27708, USA

D. H. Richter
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame,

Notre Dame, Indiana 46556, USA

G. Wang †

Physics of Fluids Group and Twente Max Planck Center, Department of Science and Technology,
Mesa+Institute, J. M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands

(Received 4 February 2021; accepted 17 May 2021; published 4 June 2021)

We use theory and direct numerical simulations (DNSs) coupled with point particles to
explore the average vertical velocities and spatial distributions of inertial particles settling
in a wall-bounded turbulent flow. The theory is based on the exact phase-space equation
for the probability density function describing particle positions and velocities. This allows
us to identify the distinct physical mechanisms governing the particle transport, which
we then examine using the DNS data and relate them to the well-known preferential
sweeping mechanism in homogeneous isotropic turbulence. When the average vertical
particle mass flux is zero, the averaged vertical particle velocity is zero away from the wall
due to the particles preferentially sampling regions where the fluid velocity is positive,
which balances with the downward Stokes settling velocity. When the average mass flux
is negative, the combined effects of turbulence and particle inertia lead to average vertical
particle velocities that can significantly exceed the Stokes settling velocity by as much
as ten times. Sufficiently far from the wall, the enhanced vertical velocities are due to
the preferential sweeping mechanism. However, as the particles approach the wall, the
contribution from the preferential sweeping mechanism becomes small, and a downward
contribution from the turbophoretic velocity dominates the behavior. Close to the wall,
the particle concentration grows dramatically, and the behavior is directly related to the
behavior of the mechanisms governing the particle settling velocity. Finally, our results
highlight how the Rouse model of particle concentration is to be modified for particles
with finite inertia by identifying particular mechanisms missing from that model due to its
assumption of vanishing inertia.
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I. INTRODUCTION

It is well-known that in homogeneous isotropic turbulence (HIT), small particles with non-
negligible inertia will settle at a rate that can exceed their Stokes settling velocity. Maxey [1] and
Wang and Maxey [2] were among the first to outline and characterize the so-called preferential
sweeping mechanism, according to which particles falling under the influence of gravity are swept
around the downward side of eddies in HIT. This biased sampling of the background velocity field
often leads to an average downwards particle velocity that is larger than that if the particles were
settling in a quiescent medium—an effect which has been seen in direct numerical simulation (DNS)
[2,3] and experiments [4–7]. It has even been observed in the settling of snowflakes through the
atmospheric boundary layer [8].

Accordingly, much effort has been directed at understanding the nature of this effect. It is
generally accepted that the maximum observed modification to the settling velocity occurs at a
Stokes number (based on the Kolmogorov scales) of order unity, and parametrizations have been
developed to describe this [9]. However, there are still questions regarding the magnitude of this
effect, as well as how this magnitude depends on other nondimensional parameters, such as the
Froude number or Reynolds number. The work of Good et al. [10] nicely maps out the various
settling regimes and addresses the possibility of turbulence retarding the settling velocity of inertial
particles and how this relates to the drag law in DNS laden with point particles. Furthermore, the
recent study of Tom and Bragg [11] advanced the work of Maxey [1] by developing a theoretical
framework that is valid for arbitrary particle inertia and reveals the contribution that different
turbulent scales make to the enhanced settling and how this depends on Stokes number, Froude
number, and flow Reynolds number. The theory predicts that for particles with finite inertia, the
Reynolds number dependence will always saturate, and that the saturation Reynolds number is a
nondecreasing function of particle inertia. These predictions were confirmed by DNS results.

Although all of the aforementioned studies have focused on HIT, the picture is significantly
less clear in the context of wall-bounded turbulent flows. Much work has been aimed at under-
standing the interaction of coherent structures with inertial particles, including transport to/from
the wall [12,13], and the turbophoretic drift [14–16]; however, the vast majority of these studies
neglect wall-normal gravity. Indeed, discrepancies in certain particle velocity statistics between
experimental setups with horizontal [17–19] versus vertical [20,21] channels are possibly due to
differences in gravitational orientation. The recent DNS of Lee and Lee [22] demonstrates that
for two-way coupled flows, the addition of wall-normal gravity can even qualitatively alter the
interaction between inertial particles and near-wall streaks and coherent structures via mechanisms
similar to that of Wang and Maxey [2].

Generally speaking, the question of inertial particle settling through wall-bounded turbulence has
been largely avoided and is complicated by several factors as compared to HIT. First, the process of
turbophoresis, which is absent in HIT due to a lack of mean gradient in turbulence kinetic energy,
is difficult to distinguish from the preferential sweeping mechanism, although they are distinct
phenomena. Second, the smallest time scales of the flow actually vary with the wall-normal location,
so it should not be expected that the settling rate is simply a function only of a single Stokes number.
The velocity of a particle falling through a flow with spatially varying timescales would be a function
of wall-normal distance, and will be influenced by the flow Reynolds number as well. Third,
rigorous phase-space probability density function theories of particle transport in inhomogeneous
turbulence suggest that there is an additional drift effect that contributes to the wall-normal particle
motion, which arises from the inhomogeneity but is distinct from the turbophoretic drift, and
exists even in the absence of gravitational settling [23–26]. The importance of this additional drift
compared with the gravitational and turbophoretic drifts is not well understood, and it is difficult
to develop closed expressions that capture its influence [27]. It is one of the goals of this paper to
distinguish between these transport mechanisms and determine their relative importance.

The settling velocity of inertial particles in wall-bounded flows is also important because it
controls the spatial distribution of the particles. In an effort to theoretically extend the logarithmic
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profile of wall turbulence for passive scalars, Rouse [28] derived the well-known power law for the
average concentration when the scalar experiences gravitational settling towards the wall where the
power is proportional to the Stokes settling velocity of the particle. This theory, which is valid only
within the logarithmic region of the turbulent boundary layer, assumes that gravitational settling is
balanced by turbulent fluxes on average, so the net flux is zero at any height, and the magnitude of the
downward settling flux is equal to the upward turbulent flux. This so-called flux-profile relationship
between the mean concentration and the flux is the basis for many geophysical measurements
which attempt to estimate the surface emission of discrete particles, such as snow, dust, or water
droplets [29–31], as well as for determining how to specify boundary conditions for heavy particles
in coarse-scale numerical models [32]. Since then, further modifications to the theory of Rouse
[28] have been performed, such as incorporating a net imbalance between the gravitational and the
turbulent fluxes [30,33]. Freire et al. [34] extended the theory to non-neutral stability, including the
effects of both stable and unstable stratifications, whereas Nissanka et al. [35] considered the full
boundary layer (i.e. not restricted only to the surface layer). Other studies, such as those by Pan
et al. [36] and Zhu et al. [37], explore beyond the one-dimensional framework by incorporating a
streamwise dependence in addition to height.

In addition to these, it is also becoming clear that particle inertia causes deviations from the
traditional Rouse theory. The recent experiments of Berk and Coletti [38] and Baker and Coletti
[39] show clearly that particle inertia causes weaker gradients of wall-normal concentration as the
Stokes number is increased as compared to that predicted by Rouse theory. From a more theoretical
perspective, Richter and Chamecki [40] attempted to incorporate inertial effects into the framework
of Rouse [28] by using a first-order perturbation expansion of the particle advection velocity with
Stokes number in the equation for mean particle concentration [1,41,42]. This inertial correction to
the particle advection velocity provided concentration profiles that matched DNS results but only in
the limit of small Stokes numbers as expected. For finite particle inertia, the underlying framework
of Rouse [28] is called into question because the equation ignores the contributions from a number
of different mechanisms that are crucial when the Stokes number is not small.

In this paper, therefore, we set out to understand and quantify the relevant transport mechanisms
for inertial particles settling through a wall-bounded turbulent flow for the dilute one-way coupled
regime. This is performed by examining the problem through a phase-space probability density
formulation where the magnitudes and regimes of relevance for the various distinct inertial effects
are calculated via idealized point-particle DNS. The goal is to clarify the multiple pathways through
which inertia can affect the flux-profile relationship in wall-bounded turbulence in order to clear the
way towards more theoretically sound extensions to the theory of Rouse [28] in the future. Section II
outlines the theoretical framework by casting the problem in phase space, and Sec. III describes the
DNS used to generate the data. We then discuss the results in Sec. IV.

II. THEORY

We consider particles with the particle-to-fluid density ratio ρp/ρ f � 1, and whose size is
smaller than the smallest length scales of the wall-bounded turbulence. Furthermore, we also
consider mass and volume loadings such that the one-way coupled dilute regime applies. In this
case, the equations of motion are

dxp(t ) = dt vp(t ) +
√

2κ dt dξ(t ), (1)

d

dt
vp(t ) = �

τp
[U p(t ) − vp(t )] + g, (2)

where xp(t ), vp(t ) are the particle position and velocity, τp is the particle response time, U p(t ) ≡
U [xp(t ), t] corresponds to the fluid velocity field evaluated at the particle position, κ is a constant
diffusion coefficient, and g is gravity. The term dξ(t ) is a normalized vector-valued Wiener process
with unit variance. This diffusion term is included since it will be used in the DNS in order to enable
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the particles to be suspended from the wall and generate a configuration where the vertical particle
mass flux is zero. It is not meant to imply that the inertial particles experience molecular diffusion,
but rather this term is simply used as a tool for one of the DNS arrangements described in more
detail below. Its presence does not influence the main goals of the paper since we will choose κ to
be sufficiently small so that the related diffusion only affects the particle motion at distances less
than one viscous wall unit from the wall. It is also helpful to include this term in the analysis since
such a term was included in the model of Rouse [28]. This ensures that our transport equations
reduce to those discussed in that work in the limits of vanishing particle inertia and κ → κ f , where
κ f is the fluid mass diffusivity.

The variable � ≡ [1 + 0.15(Rep)0.687] appears due to using the Schiller-Naumann [43] hydrody-
namic drag force model, where Rep is the particle Reynolds number. In the theoretical developments
below, for analytical tractability we assume Rep → 0 and, hence, take � = 1. In the DNS this
assumption will not be made, however, the DNS results show that on average Rep < 1. As a result,
the assumption that � = 1 in the theory will only lead to minor differences between the theory and
DNS.

Other forces acting on the particle in the near-wall region, such as lift forces [44], could also be
important to account for. However, for the current paper it is desirable to neglect such additional
effects in order to focus on and understand the intricate role of the other mechanics at play in the
system, such as those already captured in (2). Future work will extend the description to include
further effects, such as lift forces, which can then be compared to the results from this present paper
to understand the role of these additional effects.

We consider the particle motion in a phase-space x, v with the probability density function (PDF),

P (x, v, t ) ≡ 〈δ[xp(t ) − x]δ[vp(t ) − v]〉, (3)

that satisfies
∫
R3

∫
�
P (x, v, t )dx dv = 1, where � ⊂ R3 denotes the domain of the flow. Here, 〈·〉

denotes an ensemble average over all realizations of the system, and δ( ) denotes a Dirac distribution.
The exact PDE governing P is [45]

∂tP + v · ∇xP = κ∇2
xP − 1

τp
∇v · (〈U〉P )

− 1

τp
∇v · [P〈up(t )〉x,v] + 1

τp
∇v · (vP ) − g · ∇vP, (4)

where ∇2
x = ∇x · ∇x, the operator 〈·〉x,v denotes an ensemble average conditioned on xp(t ) =

x, vp(t ) = v, and up(t ) ≡ u[xp(t ), t], where u(x, t ) ≡ U (x, t ) − 〈U (x, t )〉 is the fluctuating com-
ponent of the fluid velocity field.

From (4), the transport equations governing the moments of the PDF may be constructed (see
also Refs. [16,46–48] for similar approaches to constructing the transport equations). The zeroth
moment obeys the equation,

D

Dt
	 = −	∇x · 〈vp(t )〉x + κ∇2

x	, (5)

where

D

Dt
≡ ∂t + 〈vp(t )〉x · ∇x, (6)

the operator 〈·〉x denotes an ensemble average conditioned on xp(t ) = x, and

	(x, t ) ≡
∫
R3

P (x, v, t ) dv (7)

is the marginal PDF that describes the spatial distribution of the particles.
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The first moment describes the momentum of the particle phase and is governed by

	
D

Dt
〈vp(t )〉x = κ∇2

x	〈vp(t )〉x − ∇x · 	S + 	

τp
〈up(t )〉x + 	

τp
〈U〉 − 	

τp
〈vp(t )〉x + 	g, (8)

S(x, t ) ≡ 〈[vp(t ) − 〈vp(t )〉x][vp(t ) − 〈vp(t )〉x]〉x, (9)

where S is the particle fluctuating velocity covariance tensor. We may also rearrange this equation
as an expression for the mean particle velocity,

〈vp(t )〉x = −τp
D

Dt
〈vp(t )〉x + τpκ

	
∇2

x	〈vp(t )〉x − τp

	
∇x · 	S + 〈up(t )〉x + 〈U〉 + τpg. (10)

Equations (5) and (10) for 	 and 〈vp(t )〉x, respectively, are exact, and do not introduce any
approximations beyond those already contained in the equations of motion (1) and (2) themselves.

A. Vertical transport in a stationary wall-bounded turbulent flow

In this paper we consider a horizontal statistically stationary turbulent channel flow and denote
by ez the unit vector in the vertical direction with g = −gez, x · ez = z, ez · ∇x = ∇z, vp(t ) · ez =
wp(t ), u · ez = u, 〈U〉 · ez = 0. We then obtain from (5) and (10),

	 = (
 + κ∇z	)/〈wp(t )〉z, (11)

〈wp(t )〉z = −τp

2
∇z〈wp(t )〉2

z︸ ︷︷ ︸
R1

− τp

	
S∇z	︸ ︷︷ ︸
R2

− τp∇zS︸ ︷︷ ︸
R3

+〈up(t )〉z︸ ︷︷ ︸
R4

− τpg︸︷︷︸
R5

+ τpκ

	
∇2

z 	〈wp(t )〉z︸ ︷︷ ︸
R6

, (12)

where 
 is an integration constant that is determined by the boundary conditions and physically
corresponds to the total net mass flux and S = S:(ezez ). These equations are unclosed both due to
〈up(t )〉z and S. Detailed physical interpretations of each term appearing in (12) will be given in
subsequent sections.

Equation (11) is singularly perturbed with respect to κ , and, therefore, for κ 
= 0 the solution to
(11) is

	 = 


κ

∫ z

0
I (z, y)dy, (13)

I (z, y) ≡ exp

(
1

κ

∫ z

y
〈wp(t )〉q dq

)
, (14)

whereas for κ = 0 we have simply 	 = 
/〈wp(t )〉z. In either case, this highlights that understanding
〈wp(t )〉z is important not only to quantify the average settling velocity of the particles, but also
because it determines the distribution 	(z) for a given mass flux 
.

We introduce the local Stokes number St ≡ τp/τL, where τL(z) is the fluid integral timescale at
height z from the wall and the Froude number Fr ≡ 〈‖a‖2〉1/2/g, where a is the fluid acceleration. In
the limit St → 0 with finite St/Fr, (12) reduces to 〈wp(t )〉z = 〈up(t )〉z − τpg. With this asymptotic
behavior, then for the zero-flux case 
 = 0, we obtain from (11),

0 = 	〈up(t )〉z − τp	g − κ∇z	. (15)

Using a gradient-diffusion approximation 	〈up(t )〉z ≈ −K∇z	 leads to

0 = −(K + κ )∇z	 − τp	g. (16)
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The result in (16) corresponds to the phenomenological model for 	 by Rouse [28] when the
diffusion coefficient K is based on an eddy-diffusivity approximation for the logarithm-law region
of a wall-bounded turbulent flow. As the analysis above shows, (16) is restricted to the limit St → 0
with St/Fr finite, and an important challenge is how the Rouse model is to be extended to capture
the effects of finite particle inertia as attempted in Richter and Chamecki [40]. Moreover, there
is uncertainty regarding the validity of the gradient-diffusion closure 	〈up(t )〉z ≈ −K∇z	. One
purpose of this paper is to carefully analyze how the model of Ref. [28] should be extended to
more general cases and the implications of the gradient-diffusion closure 	〈up(t )〉z ≈ −K∇z	. The
other purpose is to consider the mechanisms governing 〈wp(t )〉z, which have been theoretically
analyzed for HIT flows (e.g., Refs. [1,11]), but have not been considered in detail for wall-bounded
turbulent flows.

The equations governing 	 for arbitrary St and Fr are given by (11) and (12). Therefore, to
understand and model the more general case, we must understand the role played by each term
that appears in these equations. We will consider this first by considering their behavior in the
quasihomogeneous regions in the outer layer and then close to the wall where the flow is strongly
inhomogeneous.

B. Quasihomogeneous region

In the quasihomogeneous region away from the wall, the concentration profile is approximately
constant (∇z	 ≈ 0), and from (11) and (12) we obtain

	〈wp(t )〉z = 
 ≈ 	〈up(t )〉z − τp	g, (17)

where 〈up(t )〉z is constant. In this regime, the mean particle momentum is governed by the Stokes
terminal velocity τpg and a contribution from the average fluid velocity sampled by the particles
(commonly also called the “fluid seen by the particle”), namely, 〈up(t )〉z.

We may write

	〈up(t )〉z = 	〈up(t )〉x = 〈u(x, t )δ[xp(t ) − x]〉, (18)

where xp(t ) · ez = zp(t ), u(x, t ) ≡ ez · u(x, t ), and the first equality holds because the flow is homo-
geneous in the horizontal directions. For particles that are (instantaneously) uniformly distributed
in space, δ[xp(t ) − x] is constant, and so 〈u(x, t )δ[xp(t ) − x]〉 = 〈u(x, t )〉δ[xp(t ) − x] = 0. If the
particles are nonuniform in space, 〈u(x, t )δ[xp(t ) − x]〉 may be finite if there is a correlation between
u(x, t ) and xp(t ) [25].

For the case where 
 < 0, Maxey [1] argued that the particles are preferentially swept around
the downward moving side of vortices in the flow where u < 0, leading to 〈up(t )〉z < 0. As a
result, turbulence enhances the settling velocity of the particles compared to the Stokes settling
velocity τpg. In the regimes St  1 and St � 1, 〈up(t )〉z = 0 because the particles are uniformly
distributed in these regimes. In the regime of rapidly settling particles, i.e., Sv ≡ τpg/

√〈uu〉 � 1,
the correlation timescale of up(t ) vanishes [49,50], and as a result 〈up(t )〉z = 0 since there is no
correlation between the particle motion and the local value of up(t ) in this limit. Similarly, in
the regime Sv  1, 〈up(t )〉z = 0 because the symmetry-breaking effect of gravity that generates
preferential sweeping vanishes in this regime.

For the case where 
 = 0, then we must have 〈up(t )〉z = τpg. In this regime, the finitude of
〈up(t )〉z is due to the fact that in order for the vertical flux to be zero, the particles must preferentially
sample upward moving regions of the fluid velocity field. Therefore, although particles moving
down towards the wall may still experience the preferential sweeping mechanism that causes them to
preferentially sample downward moving fluid, this contribution is overwhelmed by the contribution
of particles moving up which necessarily experience strongly positive regions of the flow in order
to satisfy 
 = 0.

In view of these considerations, we see that, even for homogeneous flows, the importance of
the preferential sweeping mechanism depends upon the boundary conditions in the system that
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determine the flux 	〈wp(t )〉z = 
; this will be seen below to guide two different configurations of
the DNS. The presence of the wall provides a way for the zero-flux scenario 
 = 0 to emerge and
was not considered in Maxey [1] or Tom and Bragg [11] where particle settling in an unbounded
homogeneous flow was considered for which the natural state that emerges is 
 < 0.

C. Near-wall region

As the particles approach the wall, gradients in the flow statistics become important, and new
mechanisms begin to control the particle settling velocity and concentration. In this case, all of the
terms in (12) are, in principle, important.

The term R1 in (12) arises from the mean acceleration experienced by the particles due to
gradients in their mean wall-normal velocity. This contribution vanishes for the zero-flux case

 = 0 but is finite, in general, for 
 
= 0. The second term on the right-hand side, R2 in (12),
describes a velocity arising from an inertially based diffusive flux. For fluid particles, the turbulent
motion of the flow provides a mechanism for macroscopic diffusive transport (this will be discussed
in more detail below). For particles with inertia, their velocity is partially decoupled from the
local fluid velocity, and this decoupling introduces a second source of diffusion that is captured
by τpS∇z	. For St � 1, the PDF equation reduces to a Fokker-Planck equation, and in this regime
τpS∇z	 is the sole source of diffusion [26].

The third term, R3 in (12), describes the turbophoretic drift velocity [14]. Physically, this drift
velocity may be understood as follows: Suppose the particles are moving in a region of the boundary
layer where ∇z〈uu〉 > 0. In this region, if the particle is moving towards the wall, then because they
have come from regions where the flow has more turbulent kinetic energy (TKE) and because their
response time is finite, they will be moving with greater kinetic energy than the local flow. On the
other hand, if the particle is moving away from the wall then because they have come from regions
where the flow has less TKE, they will be moving with less kinetic energy than the local flow. As
a result, there is a symmetry-breaking effect and the particles experience a velocity contribution
towards the wall in regions where ∇z〈uu〉 > 0 and the opposite in regions where ∇z〈uu〉 < 0. In
the limit St → 0, the particle motion is governed only by the local flow, and so in this limit the
turbophoretic effect vanishes. It also vanishes for St � 1 where the particles move ballistically
through the boundary layer.

The fourth term, R4 in (12), describes a source of momentum arising from preferential sampling
of the local flow. In the previous section, this contribution was considered in the homogeneous
region of the flow. In that region, 〈up(t )〉z can only be finite if Sv is finite. Near the wall, however,
〈up(t )〉z can be finite even if Sv = 0. This may be conceptually understood as follows. Suppose that
due to the turbophoretic drift velocity and gravitational settling, the particles start to drift towards
the wall, and their concentration builds up. If 
 = 0, the particles must necessarily escape the near
wall region, and so they must preferentially sample regions of the flow where up(t ) > 0, leading
to 〈up(t )〉z > 0. When gravity is also present, 〈up(t )〉z may be also affected by the preferential
sweeping mechanism, however, this is likely to be a subleading effect unless 
 < 0 since if

 = 0 we must have 〈up(t )〉z > 0 as discussed above [one exception is that for St � 1, τpS∇z	

is significant and provides a mechanism to remove particles from the wall such that 〈up(t )〉z > 0
may not be required in order for particles to be able to escape the near-wall region; however, this is
irrelevant since for St � 1, 〈up(t )〉z = 0]. As for the homogeneous region, 〈up(t )〉z = 0 for St → 0
and St → ∞, the former because fluid particles uniformly sample the flow, and the latter because
for St → ∞ the particle motion is uncorrelated with the local fluid velocity.

Finally, the fifth (R5) and sixth (R6) terms on the right-hand side of (12) describe the Stokes
settling velocity, and the artificial diffusion induced velocity, respectively.

D. Average fluid velocity seen by the particles

The average fluid velocity seen by the particles 〈up(t )〉z plays, in general, an important role in
determining the particle concentration and average vertical velocity. As noted earlier, the Rouse
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model for 	 effectively amounts to assuming an eddy viscosity, gradient-diffusion closure for this
term. Here we consider this in more detail.

Analytical theories show that 	〈up(t )〉z has the form [23,24,51]

	〈up(t )〉z = ζ	 −
∞∑

n=1

D[n]∇n
z 	, (19)

where ζ is a drift coefficient, and D[n] are diffusion coefficients that depend on St, Sv, and z,
in general. The precise form of these coefficients is not quoted here since they depend upon the
particular analytical theory used (see, e.g., Ref. [25] for a detailed examination of the differences),
and these details are not important for our discussion. In practice, in order to truncate this infinite
expansion, most PDF-based models of particle transport in turbulence assume that u has Gaussian
statistics for which the series reduces exactly to [24,25,51]

	〈up(t )〉z = ζ	 − D[1]∇z	. (20)

Most interestingly, however, the asymptotic analysis of Ref. [52] showed that for a wall-bounded
flow, the regime z+  1 leads to

∑∞
n=1 D[n]∇n

z 	 ∼ D[1]∇z	 (where + denotes that the variable has
been normalized using wall units, in this case the friction length scale δν ≡ √

ν/uτ , where uτ is the
wall friction velocity and ν is the fluid kinematic viscosity). This means that the contribution of the
higher-order cumulants described by D[n] for n � 2, which are neglected in (20) due to the Gaussian
assumption, make a negligible contribution close to the wall. This is significant since it implies
that (20) is accurate close to the wall, where the particle accumulation is strong and modeling is
challenging. We also note that, as discussed in Ref. [25], models, such as Ref. [53] incorrectly set
ζ = 0, which as we will soon see, has significant implications for modeling settling particles.

The fundamental difference between the drift ζ	 and the diffusion D[1]∇z	 contributions in (20)
is that whereas the diffusion contribution is only finite if there are finite gradients in the mean particle
distribution 	, the drift contribution may be finite even if ∇z	 = 0, provided that there are inhomo-
geneities in the instantaneous particle distribution and that those inhomogeneities are correlated
with the local flow. For example, for fully mixed fluid particles, the spatial distribution is uniform
for all times, and so both the diffusion and drift contributions vanish, leading to 	〈up(t )〉z = 0 [25].
On the other hand, for settling inertial particles in a homogeneous flow, the diffusion contribution is
zero, but the drift term is finite, capturing the preferential sweeping mechanism proposed by Maxey
[1]. Furthermore, an implication of the analysis in Ref. [25], that was, subsequently, demonstrated
numerically in Ref. [27], is that even in the absence of gravity, if the instantaneous distribution of the
inertial particles in nonuniform, then ζ is also finite if the turbulence is inhomogeneous. Therefore,
for setting inertial particles in wall-bounded turbulence, ζ may be finite both due to the preferential
sweeping mechanism and also due to turbulence inhomogeneity—a behavior not possible in HIT.

Phenomenological models that close 	〈up(t )〉z using a gradient-diffusion hypothesis (such as
the Rouse model and those discussed in Ref. [47] for dilute suspensions) do not account for the
drift contribution ζ	. The significance of this omission is that such models cannot account for
Maxey’s preferential sweeping mechanism (unless they account for it by modifying the Stokes
settling velocity in the model). Note that, for inhomogeneous flows, it is still the drift contribution
ζ	 that formally accounts for preferential sweeping, and not the diffusive contribution. Therefore,
this omission of ζ	 in gradient-diffusion closures is important for inhomogeneous flows as well as
homogeneous flows.

III. DIRECT NUMERICAL SIMULATIONS

A. Equations of motion

In order to explore the role of each term appearing in (11) and (12) and evaluate their respective
contributions to the vertical velocities and distributions of the inertial particles, we use data from
point-particle DNS of settling inertial particles in a horizontal fully developed incompressible
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turbulent open channel flow. This idealized framework allows us to compare directly to the theory
described above. The DNS solves the incompressible Navier-Stokes equations,

∂tU + (U · ∇x)U = − 1

ρ f
∇x p + ν∇2

xU , (21)

where U (x, t ) is the fluid velocity, p(x, t ) is the pressure (modified to include the hydrostatic
contribution [54]), ν is the fluid kinematic viscosity, and ρ f is the fluid density. A pseudospectral
method is employed in the periodic directions (streamwise x and spanwise y), and second-order
finite differences are used for spatial discretization in the wall-normal, z direction. The solution
is advanced in time using a third-order Runge-Kutta scheme. The incompressibility constraint
∇x · U = 0 is satisfied by prescribing the pressure via the solution of its Poisson equation
∇2

x p = ∇xU :∇xU .
The unladen flow field from DNS has been tested and validated by comparison with published

data in multiple configurations; e.g., planar Couette flow at Reτ = 40 [55], wall-bounded channel
flow at Reτ = 227, 630 [56], and open channel flow at Reτ = 200, 550, 950 [57]. On top of this
flow, the trajectories of inertial particles are tracked via the standard point-particle approach by
solving (1) and (2) and obtaining U p(t ) by interpolating to the particle position using a sixth-order
Lagrange method. The particle Reynolds number appearing in � is defined as Rep ≡ ‖U p(t ) −
vp(t )‖dp/ν, which is based on the magnitude of the particle slip velocity ‖U p(t ) − vp(t )‖ and the
particle diameter dp. In this paper, the average Rep is less than 1, which is far smaller than the
suggested maximum Rep ≈ 800 for the Schiller-Naumann [43] model. As a result of the low Rep,
the correction to the Stokes drag is minimal in this paper.

The primary purpose of this paper is to develop a PDF approach for understanding settling and
dispersion mechanisms in wall-bounded turbulence and to evaluate the terms directly using the DNS
framework. As such, we employ a simplified model system, which is limited to one-way coupling
and a simple drag law (i.e., other terms, such as lift, history terms, etc. are neglected). Although
the basic point-particle technique used here is certainly subject to numerous simplifications and
approximations, we consider it a prototypical testbed from which to analyze the theory described
in the previous sections. In this regard, in Wang et al. [56] our point-particle DNS code has been
validated for inertial particles in the range of St+ = 30–2000 by comparisons against the code of
Capecelatro and Desjardins [58], and compared with the experimental results of Fong et al. [21].

B. Boundary conditions and numerical parameters

We solve equation (21) at Reτ ≡ uτ Lz/ν = 315 using a constant pressure gradient to force the
flow. The domain size is Lx×Ly×Lz = 2π×2π×1 with a corresponding grid of Nx×Ny×Nz =
128×256×128. The grid is stretched in the wall-normal direction and, thus, the simulations have a
resolution of �+

x ×�+
y ×�+

z = 15.4×7.73×0.5(wall), 4.49(center). The streamwise x and spanwise
y directions are periodic, and the wall at z = 0 imposes a no-slip condition on the fluid velocity field.
At the upper wall, z = H , a free-slip (i.e., zero-stress) condition is imposed on the fluid velocity.
This setup provides a canonical case of wall-bounded turbulence, within which two distinct particle
configurations are considered; Fig. 1 provides schematics of these two configurations which are
guided by the theoretical development above.

In the first configuration, termed the ZF case, the particle boundary conditions are designed
to maintain a statistically steady concentration within the domain and a mean net flux of zero
(
 = 0) at all heights. At the upper domain boundary z = H , the particles rebound elastically,
which is equivalent to a no-flux condition on the particle concentration. At the lower boundary,
a Dirichlet condition for particle concentration is established, which in the Lagrangian framework
is accomplished by maintaining a reservoir just beneath the wall at z = 0 whose concentration is
kept constant.

In this setup, however, some mechanism is required for generating a flux of particles into the
domain, so as to create a steady-state balance between gravitational settling and an upward emission
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FIG. 1. (a) Zero-flux (ZF) configuration in which a constant particle concentration is maintained using a
reservoir just beneath the wall; (b) constant-flux (CF) configuration in which particles are initialized at the top
of the domain and removed/replaced when they reach the wall.

flux. In physical applications, this emission mechanism would take the form of aerodynamic lift,
dust/sand saltation, wave breaking, etc. Here, we generically account for this resuspension process
by applying the weak Brownian diffusion term included in Eq. (1). We emphasize again that we
do not intend to imply that inertial particles experience Brownian diffusion; rather, it is an artificial
and simplified means of representing a wide variety of processes which in practice could release
particles into the system. By setting κ = ν/100, we limit the influence of this term only to the
region immediately close to z = 0, and tests have confirmed that the diffusive contribution to the
particle flux is negligible above the first Eulerian grid point. In the following sections, the diffusive
contribution to Eq. (12) will be shown to be negligible as well. This zero-flux configuration is the
same as that used in Richter and Chamecki [40].

In the second particle configuration, termed the CF case (designed to provide 
 < 0), the
Lagrangian particles are instead placed at the upper boundary (z = H) at a random location on
the x-y plane and given an initial vertical velocity equal to their terminal Stokes settling velocity τpg
(the other two-particle velocity components are set to zero). From here, the particles settle by gravity
through the system and when they reach the lower boundary they are removed. This is somewhat
similar to the recent experiments of Zheng et al. [59] who allow particles to settle through a turbulent
boundary layer, although in the present simulations they are removed at the lower wall and two-way
coupling is not considered. For each particle removed at the lower boundary, one is re-introduced at
the upper boundary at a random location, and, therefore, the total number of particles Np is exactly
constant throughout the simulation (in contrast to the first no-flux configuration). After a sufficient
time, the concentration profile and vertical flux attain statistical stationarity with the nonzero net
flux 
 independent of z and having a magnitude that varies with τp. Note that for this constant-flux
configuration, the diffusion term in (1) is not used (i.e., κ = 0), unlike the zero-flux configuration
where it is required to enable particle suspension into the flow from the wall. Furthermore, periodic
boundary conditions are applied to the particles in the horizontal directions of the flow for both the
zero-flux and constant-flux configurations.

These two simulation setups allow for contrasting the settling and dispersion mechanisms for-
mulated in Eq. (12) when 
 = 0 and when 
 
= 0. For each of the two configurations, six different
simulations are performed, where the particle Stokes number is systematically increased. These are
presented in Table I where case number 0 refers to the lowest Stokes number and 5 refers to the
highest. The particle diameter d+

p based on viscous wall units is 0.236 which is smaller than the
grid cell size, in particular, dp/�x×dp/�y×dp/�z = 0.015×0.305×0.472(wall), 0.053(center).
We define two different Stokes numbers: St+, which is based on viscous wall units and ranges
between 0.003 and 46.5, and StK , which is based on the vertically averaged Kolmogorov timescale
τK in the flow and ranges between 3.4×10−4 and 5.1. A Stokes number based on the local
Kolmogorov timescale would decrease with increasing wall-normal position.

In order to isolate the effect of particle inertia on settling through wall-bounded turbulence, the
gravitational acceleration g is varied with each case in order to maintain a constant settling parameter
Sv+ ≡ τpg/uτ = 2.5×10−2, where uτ is the friction velocity of the flow. This corresponds to SvK ≡
τpg/uK = 7.4×10−4 when the Stokes settling velocity is normalized by the vertically averaged
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TABLE I. Summary of the simulations. All cases are turbulent open channel flow at Reτ = 315. ZF refers
to the zero-flux case whereas CF refers to the constant flux case. Case numbers 0–5 indicate increasing Stokes
numbers.

Case
ZF CF d+

p St+ StK Sv+ SvK

0 0 0.236 0.003 3.4×10−4 2.5×10−2 7.4×10−4

1 1 0.236 0.93 0.102 2.5×10−2 7.4×10−4

2 2 0.236 2.79 0.306 2.5×10−2 7.4×10−4

3 3 0.236 4.65 0.51 2.5×10−2 7.4×10−4

4 4 0.236 9.30 1.02 2.5×10−2 7.4×10−4

5 5 0.236 46.5 5.10 2.5×10−2 7.4×10−4

Kolmogorov velocity. Roughly speaking, this value of Sv+ would correspond to a sand/dust grain
with a diameter of O(10 μm) suspended over a windy surface [e.g., uτ ≈ O(0.1 m/s)]. We choose
this value since it was also used in Richter and Chamecki [40], allowing us to compare our results
to theirs and to further understand how the modified Rouse model that they considered, which was
found to be accurate for St  1, must be modified for predicting the case of general St. Moreover,
since Sv+ is fixed in our simulations by design, any observed changes in the particle statistics are
solely due to changes in the Stokes number, not the settling number, and this aids in understanding
the results. In the environment where g is constant, both St+ and Sv+ change as τp is varied, and this
case will be considered in future work. As noted above, the flow Reynolds number is held fixed at
Reτ = 315. Although it would be instructive to test higher Reynolds numbers as well, especially in
a range where so-called very-large-scale motions occur [60], we anticipate that most of the regimes
and conclusions identified below would remain intact qualitatively, albeit with a narrowing of the
extent near-wall inhomogeneous region and an enlarging of the outer quasihomogeneous region.

IV. RESULTS AND DISCUSSION

A. Behavior of average particle distribution and vertical velocity

In Fig. 2 we show results for the average total mass flux 
, normalized vertical velocity
〈wp(t )〉z/τpg, and spatial distribution 	 for each of the cases and for both the zero-flux (a)–(c) and
the constant-flux (d)–(f) configurations. We begin by describing the results for 
, 〈wp(t )〉z, 	, and
will then turn to examine the underlying cause of their behavior in terms of the various mechanisms
described by (11) and (12).

The results in Fig. 2 for 
 for the zero-flux case are computed using (11), and the small deviations
of 
 from zero near the wall are due to statistical and numerical error when differentiating the DNS
data for 	. For the zero-flux configuration 〈wp(t )〉z is zero away from the boundaries but takes on
finite values near the boundaries due to the contribution to the particle motion from the diffusive
term involving κ in (1). As the wall is approached, 	 begins to increase significantly, indicating that
the particles accumulate near the wall.

For the constant-flux configuration, 
 varies nonmonotonically with St+ and is maximum for
Case 4. As we will discuss momentarily, this nonmonotonic behavior is due to turbulence since in
the absence of turbulence, 
 would be independent of St+ because Sv+ is held constant in our DNS.
Clearly, turbulence strongly influences this vertical mass flux, leading to enhancements of up to a
factor of 4.5 for the cases considered. The average vertical velocity 〈wp(t )〉z increases at all heights
with increasing St+, except in going from Case 4 to 5 where 〈wp(t )〉z reduces with increasing St+

in the upper portion of the domain. The results show that for Cases 1–3 as the particles move from
the upper boundary towards the wall, they pass through a significant region where 〈wp(t )〉z only
slightly increases. As they get close to the wall, however, 〈wp(t )〉z/τpg suddenly drops due to the
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FIG. 2. DNS results for the total mass flux (a, d ), normalized average vertical particle velocity (b, e), and
spatial distribution (c, f ). Different colors correspond to the different cases. Plots (a)–(c) and (d)–(f) correspond
to the zero-flux and constant-flux cases, respectively.

fluid velocity fluctuations reducing as the wall is approached. For Cases 4 and 5, 〈wp(t )〉z varies
significantly with z+ throughout the entire domain, increasing significantly as z+ is reduced down
to z+ ≈ 20, below which 〈wp(t )〉z reduces significantly. We note that for all cases, 〈wp(t )〉z/τpg
drops as the wall is approached but never actually reaches unity, despite the fact that the turbulent
fluctuations vanish as z+ → 0.

It is important to emphasize that since Sv+ = 2.5×10−2 in our DNS (fixed for all St+), the actual
settling velocities of the particles are very small compared with the velocity scales in the flow, i.e.,
〈wp(t )〉z  uτ ∀ z+. Nevertheless, relative to τpg, the enhancement to the particle settling velocity
due to turbulence is significant with 〈wp(t )〉z/τpg attaining values up to almost 10 (compared with
previous results for homogeneous turbulence in either DNS where 〈wp(t )〉z/τpg � 2 [49,50] or
experiments where 〈wp(t )〉z/τpg � 2.7 [7]). Moreover, as explained in Ref. [61], the importance
of gravitational settling on the particle motion in a wall-bounded flow is to be judged by comparing
the Stokes settling velocity to the turbophoretic velocity, not comparing it to uτ . This explains how
we are able to observe a strong effect of gravity, even though Sv+ is very small.

Concerning 	, for the constant-flux case we observe that away from the upper boundary, 	

decreases slightly as z+ decreases, until close to the wall where it sharply increases, indicating a
near-wall accumulation of the particles. For this constant-flux case where there is no diffusion and
(11) reduces to 	 = 
/〈wp(t )〉z, 	 necessarily increases close to the wall if 〈wp(t )〉z decreases as
z+ decreases, which we would expect if turbulence plays a role in the particle motion.

In Fig. 3 we plot the results for 	 on a log-log scale in order to examine the behavior close to the
wall. For the zero-flux configuration, we find that for z+ � 6, 	 increases sharply but not exactly as
a power law. Moreover, our results indicate that even if one approximately fits the data with a power
law, the exponent increases with increasing St+, contrary to the behavior discussed in Sikovsky
[52] and Johnson et al. [16]. This discrepancy may be due either to the inclusion of gravity or to
the molecular diffusion term used to resuspend the particles from the wall, neither of which were
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FIG. 3. Results for 	+ plotted on a log-log scale to emphasize the behavior close to the wall. (a) Zero-flux
configuration and (b) constant-flux configuration.

considered in Sikovsky [52] or Johnson et al. [16]. For the constant-flux configuration, the results
in Fig. 3 show that for z+ � 20, 	 sharply increases with a behavior that is again close to but not
exactly a power law.

B. Mechanisms controlling the wall-normal particle motion

In order to understand the physical mechanisms governing the behavior of 〈wp(t )〉z and 	, we
compute the various terms that contribute to 〈wp(t )〉z according to (12). Figure 4 shows the results
for the zero-flux case. Throughout most of the domain where 〈wp(t )〉z = 0, we find that for Cases

FIG. 4. Results for the averaged vertical particle velocity 〈wp(t )〉z, compared with the different contribu-
tions to this velocity according to (12), for the zero-flux configuration. Each subplot (a), (b), etc., corresponds
to Cases 1, 2, etc, respectively, and Ri denotes the ith term on the right-hand side of (12).
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FIG. 5. Results for S+ plotted on a log-log scale to emphasize the behavior close to the wall. (a) Zero-
flux configuration and (b) constant-flux configuration. The legend is the same as Fig. 2, except for ◦ which
corresponds to the fluid wall-normal Reynolds stress 〈u+u+〉.

0 and 1, 〈wp(t )〉z ≈ 〈up(t )〉z − τpg, which is the behavior expected for a quasihomogeneous flow
according to (17). However, the results in Fig. 5 show that over this same region the vertical fluid
Reynolds stress 〈uu〉 varies appreciably. This may be understood by noting that in the limit St+ → 0
with Sv+ finite and (17) also reduces to the result 〈wp(t )〉z = 〈up(t )〉z − τpg. For larger St+, the
inhomogeneity does play a role, and for Cases 2–5 〈wp(t )〉z ≈ 〈up(t )〉z − τpg does not hold because
a significant contribution arises from the turbophoretic velocity −τp∇zS in (12) (term R3). This
turbophoretic velocity switches from being positive in the upper portion of the domain to negative
in the lower portion due to the sign of ∇zS, whose sign changes because of the change in sign
in the gradient of the fluid Reynolds stress (see Fig. 5). This means that in the upper portion of
the domain, both the turbophoretic velocity and the velocity arising from preferential sampling of
the fluid, i.e., 〈up(t )〉z, act against the Stokes settling velocity −τpg in order to preserve 
 = 0.
Close to the wall where −τp∇zS changes sign and causes particles to drift towards the wall, 〈up(t )〉z

increases in magnitude, and an inertial diffusion contribution from (τp/	)S∇z	 (term R2) is also
activated that preserves 
 = 0. This diffusion contribution becomes increasingly important as St
is increased as expected based on the discussion in Sec. II C and consistent with the results in
Ref. [16]. For all cases, we find that the contribution from the acceleration −(τp/2)∇z〈wp(t )〉2

z (term
R1) is negligible. Furthermore, the artificial diffusion (τpκ/	)∇2

z 	〈wp(t )〉z (term R6) term is indeed
negligible as designed, even close to the wall since its only purpose was to act as a mechanism for
suspending particles from the lower boundary.

In Fig. 6 we similarly compute for the constant-flux configuration the various terms that
contribute to 〈wp(t )〉z according to (12). Unlike the zero-flux case, for the constant-flux case the
particles have a finite average vertical settling velocity. For St+ → 0, 〈wp(t )〉z/τpg → 1, whereas
for finite St+, 〈wp(t )〉z/τpg attains values of up to 10, indicating remarkably strong enhancements
of the average particle settling speeds due to the combined effects of turbulence and particle
inertia [recall that 〈wp(t )〉z/τpg = 1 ∀ St+ in the absence of turbulence]. For z+ > O(100), the
dominant cause of the enhanced settling velocity comes from 〈up(t )〉z (term R4). As discussed
in Sec. II B, when 
 < 0 and the flow is homogeneous, 〈up(t )〉z is finite due to the preferential
sweeping mechanism [1,11]. However, as explained in Sec. II D, for wall-bounded turbulence, there
is an additional contribution to 〈up(t )〉z arising from the combined effects of particle inertia and
turbulence inhomogeneity. This additional contribution may explain why we observe larger values
for 〈wp(t )〉z/τpg at z+ > O(100) than have previously been observed for homogeneous turbulence
in either DNS where 〈wp(t )〉z/τpg � 2 [49,50] or experiments where 〈wp(t )〉z/τpg � 2.7 [7].

064302-14



MECHANISMS GOVERNING THE SETTLING VELOCITIES …

FIG. 6. Results for the averaged vertical particle velocity 〈wp(t )〉z, compared with the different con-
tributions to this velocity according to (12) for the constant-flux configuration. Each subplot (a), (b),
etc., corresponds to Cases 1, 2, etc., respectively, and Ri denotes the ith term on the right-hand side
of (12).

As the wall is approached, 〈up(t )〉z (term R4) begins to reduce in magnitude [since up(t ) → 0
for zp(t ) → 0], whereas the turbophoretic velocity −τp∇zS (term R3) suddenly grows in magnitude
and dominates 〈wp(t )〉z close to the wall. It is the contribution from −τp∇zS that enables 〈wp(t )〉z

to remain finite as the wall is approached. Physically, the inertial particle remembers its interaction
with the turbulence along its path history in regions where the TKE is finite, and this enables wp(t )
to be finite even if up(t ) = 0, such as at the wall. It is this path-history effect that is described by
−τp∇zS as explained in Sec. II C . These results, therefore, show that, as the wall is approached,
the importance of the preferential sweeping mechanism in determining the particle settling velocity
gives way to the turbophoretic drift mechanism.

Comparing Fig. 4 with Fig. 6, we see that in both cases, near the wall the dominant negative
contribution to 〈wp(t )〉z comes from the turbophoretic drift (unless St+ is very small), and that
−τp∇zS attains a peak magnitude near the wall that is similar for both cases. The main difference
between the two cases concerns the behavior of the positive contributions to 〈wp(t )〉z. In particular,
for the constant-flux configuration, the absorbing wall boundary condition means that once the
particles have reached the wall, they do not have enough time close to the wall in order to experience
sufficiently large positive values of up(t ) that can transport them away from the wall. This differs
from the zero-flux case for which 〈up(t )〉z > 0 near the wall enabling the particles to be suspended
back into the flow from the near-wall region, producing the zero-flux state. The inertial-diffusion
term −τpS∇z	 (term R2) is also much smaller in the near-wall region for the constant-flux case than
it is for the zero-flux case.

Similar to the zero-flux configuration, for the constant-flux configuration we find that the con-
tribution from the acceleration −(τp/2)∇z〈wp(t )〉2

z is negligible, even close to the wall. Therefore,
for both configurations, the first and sixth terms on the right-hand side of (12), R1 and R6, may be
safely neglected (R6 is identically zero for our constant flux case).
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C. Extending the Rouse model

As stated in the Introduction, one of the motivations for our paper is to consider how the
Rouse model for particle concentration (that was derived for St+ → 0 with finite St+/Fr+) must
be extended in order to apply for St+ � O(1). Based on the results in this section, terms R1 and R6
in (12) may be neglected. Furthermore, if we use (20) to model 〈up(t )〉z, then for the zero-flux case
we obtain the approximate version of (12),

0 ≈ −(τpS + D[1] + κ )∇z	 − 	(τp∇zS − ζ + τpg). (22)

Comparing this with the Rouse model in (16) reveals a number of differences and points to
the way in which the Rouse model is to be extended to apply for St+ � O(1). First, Rouse’s
eddy-diffusion model K that only applies in the logarithm-law region can be replaced with the
more general diffusion coefficient D[1] that is valid for arbitrary z+ and for which a simple closed
expression is given in Zaichik [53]. Second, an additional contribution to the diffusion coefficient
must be accounted for, namely, τpS, which captures the diffusion contribution arising because of
the imperfect coupling between the fluid and inertial particle velocities. Third, the turbophoretic
velocity −τp∇zS must be accounted for. Fourth, the drift contribution ζ must be accounted for
that captures the effects of the preferential sweeping mechanism of Ref. [1] as well as preferential
sampling of the flow due to turbulence inhomogeneity. The study of Ref. [40] captures some of
these additional effects for St+  1 but does not apply for St+ � O(1).

The terms involving S are unclosed, and S must be predicted, yet its transport equation is
unclosed. Models, such as Ref. [53] attempt to close these transport equations using a quasinormal
approximation. Although this may lead to reasonable results far enough away from the wall, near
the wall [e.g., z+ � O(10)] such a closure is known to yield behavior that is inconsistent with the
behavior predicted using asymptotic analysis (see Ref. [52]). Developing closures that are consistent
with this asymptotic behavior is crucial since it is in the near-wall region where most of the
complexity in the particle motion occurs, e.g., where the strong particle accumulation occurs. It is
also necessary to test the accuracy of the closure in Eq. (20) and to develop a closed form expression
for the drift velocity ζ . These issues are extremely important in achieving accurate representations
of particle transport in coarse-scale models, including in both large-eddy simulation- (LES-) and
Reynolds-averaged-Navier-Stokes-based schemes. In the context of wall-modeled LES, which was
the motivation behind the work of Johnson et al. [16], an accurate subgrid treatment of near-wall
behavior could ultimately be described by appropriate closures. At even coarser scales, such as the
representation of the atmospheric surface layer in dust-laden numerical weather prediction models,
flux-profile relationships are required to provide lower boundary conditions to fields of conserved
scalars—what to do when these scalars both settle and experience inertia remains unknown, and, in
practice, the standard Rouse model is used even in these situations. Consideration of these issues
will be the subject of our future work.

V. CONCLUSIONS

We have used a combination of theoretical analysis and point-particle DNS data to explore the
mechanisms and behavior of the settling velocities and spatial distributions of small inertial particles
in a wall-bounded turbulent flow. Two different flow configurations were considered, one where the
particle mass flux is zero, and the other where it is constant and negative.

The theory is based on the exact transport equations for the particle statistics that are derived
from a phase-space master PDF equation. This allowed us to identify and consider the specific
contribution to the particle settling velocities and spatial distribution coming from distinct physical
mechanisms in the system, which we could then explore using our DNS data.

For the zero-flux case, the DNS results revealed that the vertical particle motion is similar to
the behavior without gravitational settling. For the constant-flux case, the combined effects of
turbulence and particle inertia lead to average vertical particle velocities that can significantly exceed
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the Stokes settling velocity, similar to what is seen in HIT. In particular, as the particles approach the
wall, their average vertical velocity can significantly increase, depending on St+, reaching values up
to ten times the Stokes settling velocity. Below a certain z+, however, the average vertical particle
velocities reduce due to the reduction of the fluid velocities as the wall is approached.

Concerning the mechanisms governing the average vertical particle velocity, in the zero-flux
case, at heights z+ � O(100), the average velocity is zero, and for the lower St+ cases this is
due to a downward contribution from the Stokes settling velocity that is precisely balanced by
an upward velocity arising from the particles preferentially sampling regions of the flow where the
fluid velocity is positive. For larger St+ there is also an upward turbophoretic velocity (since in this
region the fluid Reynolds stresses decay with increasing z+) that acts together with the preferential
sampling effect to counterbalance the Stokes settling velocity. As the particles approach the wall,
they experience a strong turbophoretic velocity contribution that drives them towards the wall, that
is counteracted by an upward velocity contribution arising from the preferential sampling of regions
where the fluid velocity is positive and additional contributions arising from diffusive mechanisms
that are driven by gradients in the concentration field.

For the constant flux case, for z+ � O(100) the average vertical particle velocities can signifi-
cantly exceed the Stokes settling velocity due to the particles preferentially sampling regions where
the fluid velocity is negative. This effect is associated with the preferential sweeping mechanism of
Ref. [1]. As St+ increases, there is also an upward contribution from the turbophoretic velocity, but
this is overwhelmed by the contribution from preferential sweeping. As the particles approach the
wall, the contribution to the average vertical particle velocity coming from the preferential sweeping
mechanism becomes small, and a downward contribution from the turbophoretic velocity dominates
the behavior.

For future work, it is important to consider how the behavior observed here changes when Sv+ is
varied since this quantity was held fixed in our simulations in order to isolate the effect of St+.
In the environment, St+ and Sv+ will vary simultaneously, and as such, different mechanisms
may compete and play dominant roles compared with the case we have explored. It will also be
interesting to perform DNS using more particles, and/or longer simulation times in order to generate
robust statistics very close to the wall so that the asymptotic behavior there may be explored in
detail. Finally, one of the motivations for this paper was to better understand the role of particle
inertia in order to understand how the Rouse model for the particle concentration, which was
derived for St+ → 0 (with finite St+/Fr+), can be modified for St+ � O(1). Our paper, and results
from the future research just discussed can provide crucial insights guiding the particular terms
and mechanisms that must be incorporated into such an extended Rouse model. For example, our
present results show that in order for the Rouse model to describe the regime St+ � O(1), it must
be extended to include the turbophoretic drift velocity, a diffusion mechanism associated with the
inertial particle velocities being partially decoupled from the local fluid velocity as well as the
term describing the preferential sampling of the fluid velocity field, which captures the preferential
sweeping mechanism.
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